
1

General Instructions for Grading Programs
(instructions for the grader)

Unless instructed otherwise, grade programs based on:

 Correctness

 Process

 Style

 Documentation

*** For any points deducted, put a CONSIDER tag saying

how many points deducted and why. ***

For some assignments (whatever your instructor announces),

the student can “earn back” points, as follows. Within 3

days after received the graded assignment, the student can

(for any error, as indicated by a CONSIDER comment):

 Correct the error

 Change the comment from CONSIDER to REGRADE

The grader will re-grade anything so marked and update the

score appropriately.

Students: “earn back” is a privilege – don’t abuse it. Put

forth your “good faith” effort on the project and reserve

earn-back for errors that you did not anticipate.

Correctness: For each item marked (per the grading

instructions specific to the assignment):

 Full credit: Behaves as specifies

 80%: One “very small” error

 40 or 50%: One “small to medium-sized” error

 0%: A “large” error or more than one error

Process: Students should use:

 Documented stubs for each method

 Unit tests written before implementing the method,

when unit tests are used

 UML class diagrams written before implementing the

classes, when UML is used.

Grader: You need not “grade” the students’ use of process

(since it is hard to do so), but we reserve the right to

reduce a student’s score if he is not using the above process.

Style: Deduct 10% of the assignment’s total for each of the

following (but limit the total deducted for style to a

maximum of 40% of the assignment’s total):

1. Control-Shift-F on the file causes any significant

change. Deduct 10% for EACH such change.

 Eclipse highlights in purple the line numbers of

lines that change when you do Control-Shift-F.

Grader, you can put a single CONSIDER that says

something like “-30% for 3 errors exposed by

Control-Shift-F” – you don’t have to explain any

further, since the student can do Control-Shift-F

herself to see the changes.

2. Any TODO’s are left (unless they are intentional).

3. Any warning messages are left (students should use

@SuppressWarnings if the source of the warning is

intentional).

2

 Any missing documentation will generate a warning

message. Deduct as a style or documentation

error (but not as both).

4. Variable, method or class names are chosen poorly.

5. A method is too long (i.e., it should have been broken

up into sub-method calls).

6. A statement is too long (i.e., an intermediate variable

should have been introduced).

7. A variable is introduced where the code is clearer

without it. For example:

int answer = ... blah …;

return answer;

is clearer when written simply as:

 return … blah …;

8. A variable has greater scope that necessary.

 For example: a variable that could be local to a

method is instead a field, or a for loop variable is

not local to the for loop.

9. White space is used poorly (Control-Shift-F catches

most of these errors).

10. Any other poor style that you notice. (Let me know

what you take off per this “other poor style” bullet so

that I can add it to the above list.)

Documentation: Deduct 10% of the assignment’s total for

each of the following (but limit the total deducted for

documentation to a maximum of 40% of the assignment’s

total):

1. Class does not have a reasonable description.

2. Public or protected method or field does not have a

reasonable description.

3. Missing or extra tags.

4. Tags without a reasonable description, e.g. @param

with nothing after it.

 Exception: if the name of the parameter is self-

documenting, nothing is needed after the @param

(e.g. @param ballToAdd is self-documenting).

5. Undocumented (or poorly documented) private

methods whose name and parameter names do not

make it clear what the method accomplishes.

 Such comments should rarely be necessary,

since method and parameter names should

generally be chosen to make the method self-

documenting.

6. Ditto for private fields.

7. Chunks of code which are especially long and/or

obtuse, yet lack an appropriate in-line comment.

(Such comments should rarely be necessary.)

